The neural bases of spatial frequency processing during scene perception

نویسندگان

  • Louise Kauffmann
  • Stephen Ramanoël
  • Carole Peyrin
چکیده

Theories on visual perception agree that scenes are processed in terms of spatial frequencies. Low spatial frequencies (LSF) carry coarse information whereas high spatial frequencies (HSF) carry fine details of the scene. However, how and where spatial frequencies are processed within the brain remain unresolved questions. The present review addresses these issues and aims to identify the cerebral regions differentially involved in low and high spatial frequency processing, and to clarify their attributes during scene perception. Results from a number of behavioral and neuroimaging studies suggest that spatial frequency processing is lateralized in both hemispheres, with the right and left hemispheres predominantly involved in the categorization of LSF and HSF scenes, respectively. There is also evidence that spatial frequency processing is retinotopically mapped in the visual cortex. HSF scenes (as opposed to LSF) activate occipital areas in relation to foveal representations, while categorization of LSF scenes (as opposed to HSF) activates occipital areas in relation to more peripheral representations. Concomitantly, a number of studies have demonstrated that LSF information may reach high-order areas rapidly, allowing an initial coarse parsing of the visual scene, which could then be sent back through feedback into the occipito-temporal cortex to guide finer HSF-based analysis. Finally, the review addresses spatial frequency processing within scene-selective regions areas of the occipito-temporal cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinotopic sensitisation to spatial scale: Evidence for flexible spatial frequency processing in scene perception

Observers can use spatial scale information flexibly depending on categorisation task and on their prior sensitisation. Here, we explore whether attentional modulation of spatial frequency processing at early stages of visual analysis may be responsible. In three experiments, we find that observers' perception of spatial frequency (SF) band-limited scene stimuli is determined by the SF content ...

متن کامل

Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study.

It has been suggested that visual scene recognition is mainly based on spatial frequency (Fourier) analysis of the image. This analysis starts with processing low spatial frequencies (LSF), followed by processing high spatial frequencies (HSF). Within the framework of the spatial frequency analysis, the right/left hemisphere would be predominantly involved in LSF/HSF analysis, respectively. The...

متن کامل

Associative Processing Is Inherent in Scene Perception

How are complex visual entities such as scenes represented in the human brain? More concretely, along what visual and semantic dimensions are scenes encoded in memory? One hypothesis is that global spatial properties provide a basis for categorizing the neural response patterns arising from scenes. In contrast, non-spatial properties, such as single objects, also account for variance in neural ...

متن کامل

Dynamics of scene representations in the human brain revealed by 1 magnetoencephalography and deep neural networks 2 3

22. CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. ABSTRACT 23 24 Human scene recognition is a rapid multistep process evolving over time from single 25 scene image to spatial layout processing. We used multivariate pattern analyses on 26 magnetoencephalography (MEG) data to unravel t...

متن کامل

سایکوآکوستیک و درک گفتار در افراد مبتلا به نوروپاتی شنوایی و افراد طبیعی

Background: The main result of hearing impairment is reduction of speech perception. Patient with auditory neuropathy can hear but they can not understand. Their difficulties have been traced to timing related deficits, revealing the importance of the neural encoding of timing cues for understanding speech. Objective: In the present study psychoacoustic perception (minimal noticeable differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014